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Abstract In this note we introduce a method to calculate the finite volume corrections to
the mean field results for the free energy when replica symmetry is broken at one-step.
We find that the naive results are modified by the presence of additional corrections: these
corrections can be interpreted as arising from fluctuations in the size of the blocks in the
replica approach. The computation suggests a new approach for deriving the replica broken
results in a rigorous way.
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1 Introduction

The exact solution of the mean field theory of a wide class of spin glasses and other dis-
ordered models can be found using the replica approach. When we lower the temperature
these models undergo a phase transition: the system freezes in a highly correlated phase
without necessarily breaking any symmetry of the Hamiltonian (sometimes the Hamiltonian
has no symmetry at all). The replica formalism allows us to describe this phase transition in
a spontaneous symmetry breaking framework [1, 2]. One introduces the replica symmetry
that is spontaneously broken in the low temperature phase.

Although many of these results can be obtained in a rigorous mathematical way [3, 4],
the original replica method is not crystal clear from a pure mathematical viewpoint. We
shall also see that there are ambiguities when we compute the finite volume corrections.
The analytic framework of the replica method needs a deeper comprehension and this work
should be a contribution in that direction.

There is a perfectly well understood physical interpretation of the phenomenon of replica
symmetry breaking using a probabilistic approach: all the computations can be done in a
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transparent way without ever introducing a non-integer number of replicas [1, 2]. Unfortu-
nately at the present moment this probabilistic approach does not allow us to calculate in
a simple way the finite volume corrections. In principle the replica method allows such a
computation, but the naive results turned out to be wrong, if compared with the exact results
for the random energy model (REM) of Derrida. The absence in the conventional replica ap-
proach of a term corresponding to the fluctuations of the parameter m was clearly identified
as the likely source of this discrepancy [11, 12].

In this note we show that the results of the usual one step replica symmetry breaking
solution can be obtained within a conventional saddle point approach if a given infinite class
of saddle points is taken into consideration. In this way we have a well defined mathematical
setting where we can compute the finite volume corrections to the mean field results and
derive results that are correct in the case of the REM.

The usual parameter m of replica symmetry breaking appears as an integration variable.
In the infinite volume limit the m integral is rapidly oscillating and it is dominated by a sad-
dle point in the variable m, where the integration path in the complex plane is perpendicular
to the real axis. This explains why the saddle point in the conventional replica approach is a
minimum and not a maximum as function of m. Of course we still have to justify why the
sum over the particular class of saddle points we have chosen should give the exact results,
however this is a well defined mathematical problem, that we will not address here.

2 A Short Introduction to the Replica Method

In disordered systems we are interested in computing the average free energy F(β) defined
as

F(β) = − lim
N→∞

FN(β), FN(β) ≡ (Nβ)−1ln(ZN(β)), (1)

where the bar denotes the average of the random instances of the problem and ZN(β) is the
partition function for a system with N degrees of freedom at inverse temperature β .

The quantity F(β) can also written as:

lim
n→0

F (n)(β), (2)

where

F (n)(β) = − lim
N→∞

(nNβ)−1 ln(ZN(β)n). (3)

In the replica formalism one introduces a temperature-dependent effective free energy
F(Qab), where Qab is a symmetric matrix zero on the diagonal, the pairs of indexes a, b

assume n(n − 1)/2 values; eventually n has to go to zero in the calculation of the physical
quantities. In many interesting cases one can derive the exact representation

ZN(β)n = C(N,n)

∫
dQ exp(−NβF(Q)), (4)

where C(N,n) = (2πN)n(n−1)/4. For lightening the notation we have not indicated the obvi-
ous dependence of F on n and β . Moreover in some models (depending on minor details1),

1These corrections are absent in the Sherrington Kirkpatrick model for spin glasses, if the coupling are
Gaussian random variables, but they are present in the case of bimodal distribution of the couplings.
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one should add subleading terms in N in the exponent: we will not consider in this note
this complication that is irrelevant for our aims (however it is crucial if one wants to obtain
expressions correct at the subleading level in a given model).

The permutation group of n elements acts naturally on the matrix Q, i.e. (Qπ)a,b =
Qπ(a),π(b). The function F(Q), that depends on the model, is invariant under the action of
the permutation group (the so called replica group).

If we use formally the method of the point of maximum (that is justified in the limit
N → ∞), the free energy density is given by

F = lim
n→0

F(Q∗), (5)

where Q∗ is the (supposed unique) stable solution of the equation

∂F (Q)

∂Qa,b

= 0. (6)

More precisely a solution of the previous is stable if the Hessian matrix

Ha,b;c,d ≡ ∂F (Q)

∂Qa,b∂Qc,d

(7)

is a non-negative matrix.
If we solve the previous equations for integer n, the solution is an n × n matrix (no

analytic continuation is needed at this stage). For integer n the maximum solution is always
given by a matrix where all off-diagonal elements are equal, i.e. Qa �=b = q; in this case the
replica symmetry is exact (i.e. the solution of (5) is invariant under the permutations of n

elements): this is the replica symmetric (RS) solution. The properties of this solution can be
analytically continued in n up to n = 0, that is the interesting point. At low temperatures it
may happen that the RS solution is no longer stable for small n (n < 1). This means that
in the low temperature phase the relevant solutions (5) are not invariant under the replica
group. The way in which this replica-symmetry is broken depends on the particular model
but basically two main universality classes have been identified in mean field models.

For a first class of models the mean field solution Q has the one-step of replica symmetry-
broken (1RSB) form. In this case the possible values of Qab are only two: Qab = q0 or
Qab = q1 (with q1 > q0). In many of the models q1 �= 0 q0 = 0. For simplicity in this first
approach to the problem of calculating finite size corrections we will only consider here the
case where q0 = 0.

For integer n the 1RSB solution can be represented in terms of an n×n matrix with n/m

blocks of size m × m on the diagonal. Outside the blocks Qab = q0, while within the blocks
Qab = q1:

Qab = q1, if Int(a/m) = Int(b/m),

Qab = q0, if Int(a/m) �= Int(b/m).
(8)

Eventually in the replica method also m takes non-integer values. Models, where the replica
symmetry is broken at the one step level, are interesting for their relevance to the behavior
of structural glasses [5–9].

For a second class of systems the low temperature solution can be parameterized in terms
of a continuous function q(x). These models have a different phenomenology from models
of the first class and the physical interpretation of the solution is more involved [1, 2, 10].

In this note we will only consider models of the first class (1RSB) and we try to obtain a
deeper comprehension of some points of the replica method in this simpler case.
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A difficulty present in all models with a replica symmetry breaking transition (i.e. models
of the first and of the second class) is related to the analytic continuation in n. Indeed we
have to find the solution of (5) for n = 0 and we have to provide an Ansatz on the form of
the matrix Q. Of course 0 × 0 matrices do not exist in reality, but they may be considered
as the analytic continuation up to n = 0 of some matrices that are defined for convenient
integer positive values of n (one continues analytically not the matrix, but scalar functions
of the matrices). This space is huge and there is no definite number of parameters over which
we can maximize the free energy to obtain the saddle point solution. A way to bypass this
difficulty is to decide a priori the form of the solution with a fixed number of parameters:
we restrict ourself to a particular family of solutions and determine the best solution within
that family.

In models where the 1RSB solution is correct we assume that the solution to the saddle
point equations is of the previous described form (8). Under this assumption it is possible to
compute the effective free energy as function of q0, q1, n and m. The form of the effective
free energy can be analytically continued to n = 0 and to generic m. In this way one obtain an
effective free energy F(q0, q1,m) where m is a real parameter (eventually the parameter m

turns out to belong to the interval [0 − 1]). The solution to the saddle equation can be found
by extremizing the free energy with respect to q0, q1 and m. In the three cases (q0 = q1,
m = 0 and m = 1) we recover the replica symmetric solution. It is remarkable that the free
energy in the replica broken case is higher that the free energy in the replica symmetric case.

We acknowledge that in this approach we choose a priori the form of the solution and,
unless we find an alternative way to solve exactly the particular model, there is no way to
assure ourselves that there is no other solution, maybe completely different, that gives the
exact free energy density.

3 A Simple Exact Representation

Let us consider a system with infinite range interactions where the mean field approach
gives the correct results in the thermodynamic limit. As starting point we follow backwards
Derrida’s approach to REM [14, 15] and use an integral representation of the logarithm to
calculate the average free energy:

lnZN =
∫ ∞

0

dt

t
(exp(−t) − exp(−tZN)). (9)

Let us define

exp(−φ(t,N)) ≡ exp(−tZN). (10)

We now perform a Taylor expansion around 0:

exp(−tZN) =
∑

k=0,∞

1

k! (−t)kZk
N (11)

and compute Zk
N using the representation mentioned in the previous section

Zk
N = C(N,k)

∫
dQ exp(−NβF(k,Q)), (12)

where the integral is done over the parameters of the k × k matrices.
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The reader should notice that the Taylor expansion in (11) is probably non-convergent:
in the case of Gaussian disorder Zk

N diverges as exp(Ak2) for large k. However we shall see
later that this might not be a problem.

In this approach everything is written in terms of the average of the partition function to
an integer power and therefore no analytic continuation is needed. The value of Zk

N could be
evaluated in the large N limit using a saddle point approximation in (12). However, when the
volume N goes to infinity, we have to evaluate the sum for large values of t (ln(t) � N) and
different terms may cancel. Therefore we are not allowed to restrict ourselves to the leading
estimate of the Zk

N . Nevertheless, if a sufficiently accurate evaluation of the quantities Zk
N

is done for large N , we should obtain the correct result. We will conjecture that there is an
effective way to do this computation.

4 New Conjectures

As a consequence our task is to obtain the best approximation to the quantities Zk
N in the

large N limit. We must obtain uniform approximations because the expansion in powers of
t in (12) cannot be exchanged with the integral over t . The reader should notice that here
we stick to integer k and no analytic continuation in k is done. Naively one could think
that if we know exactly the function Zk

N for all k, we also know its analytic continuation at
non-integer k. However this is not evident in this particular case. Indeed if A is a positive
quantity, the knowledge of the moments

A(k) ≡
∫ ∞

0
dμ(A)Ak (13)

determines the positive measure μ(A) in a unique way only in some cases. In particular if

∑
k=1,∞

(A(k))−1/k = ∞ , (14)

the measure is unique. Unfortunately in our case the J have a Gaussian distribution2 and the
moments increase as exp(Ck2). The question of uniqueness is therefore open.

For each given k there may be many stationary points of the argument of the exponent in
(12) and the leading contribution when N goes to infinity can be easily evaluated. However,
as already remarked, this is not sufficient because of the strong cancellations and subdomi-
nant terms must be taken into account. We find it convenient to make two conjectures that
allows us to make further progress.

• We conjecture that if we approximate Zk
N by the sum over all the saddle points, this

approximation is enough to obtain the correct results if inserted into (11). It may be not
so simple to classify all the saddle points for the function F(k,Q), although in some cases
it is possible. We have the task of finding all the solutions for integer k of the equation
∂F (k,Q)/∂Q = 0.

• We further conjecture that in the case of one step replica symmetry breaking, the correct
results are obtained if we only consider some saddle points that generalize the one step
replica symmetry breaking.

2If the distribution of the coupling J is bounded, the analytic continuation would be uniquely defined.
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Let us be more specific. We will restrict our search to those matrices Q that can be divided
into blocks of size mi , where

∑l

i=1 mi = k and mi > 0. (Here l is the total number of
blocks of the matrix.) The off diagonal elements of Qab have a constant value (that may be
l dependent) if a and b belong to the same block. In other words

Qab = qi if a ∈ Bi, b ∈ Bi. (15)

Moreover we consider, as candidates for the stationary points, only matrices where Qab is
zero if a and b do not belong to the same block. This last requirement is reasonable in the
case where it turns out that q0 = 0 in the usual replica approach.

In this way each stationary point is characterized (apart from permutations) by the size
of the blocks Bi ≡ mi and by the values of qi . The same contribution appears more than
once. To determine its multiplicity we imagine performing all possible permutations of the
k rows/columns and checking whether the matrix generated is different. For instance, if all
mi are different, the contribution is:

k!∏l

i=1 mi !
exp(−NβF({m}))δ

(
l∑

i=1

mi − k

)
, (16)

where l is the number of blocks in the matrix Q3.

5 The Leading Term

Let be more definite and let us put these conjectures at work. The prototype models we have
in mind are spin glasses models with a p-spin interaction. For p > 2 their low energy phase
is described by one step replica symmetry breaking and in the limit p → ∞ they coincide
with a soluble model: Derrida’s REM [14–16].

In these models one can verify through an explicit computation that at the saddle point
the leading term when N goes to infinity is factorized into contributions from each block.
Neglecting terms of order 1 the final expression for the contribution of a given saddle point
is given by

exp(−NβF({m})) = exp

(
−N

∑
i=1,l

βmi(f (mi))

)
. (17)

We must now sum over all the possible saddle points, counted with their multiplicity. The
final result is

Zk
N =

∞∑
ν1,ν2,...=0

k!∏∞
m=1 νm!(m!)νm

exp

(
−Nβ

∑
m=1,∞

νmmf (m)

)
δ

(∑
m

mνm − k

)
, (18)

where νm is the number of blocks of size m. The quantity −f (m) is equal to the 1RSB
free energy whose form depends on the model. In the REM one verify that one obtains the
correct formulae using

f (x) = −β

4
x − ln(2)

βx
. (19)

3For simplicity we have assumed that we have only one non-zero solution for the {q} at fixed {m}.
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Indeed in the particular case of the REM the previous representation is exact without sub-
leading correction. The computation was done in an explicit way in [14, 15].

We can now use the previous expressions for Zk
N in the computation of exp(−φ(t)).

Using (18) we can write

exp(−φ(t,N)) ≡
∞∑

k=0

(−t)k

k! Zk
N = exp

( ∞∑
r=1

(−t)r

r! exp(−rNβf (r))

)
. (20)

A detailed computation shows that the limit, where N and t both go to ∞ at constant
y = ln t/N , is relevant to compute the average free energy (this is justified a-posteriori). We
just face the problem of evaluating in this region the quantity

−φ(t,N) =
∞∑

r=1

(−t)r

r! exp(−rNβf (r)). (21)

For this purpose we follow the method (introduced in this context by [13, 17]) of
transforming the previous sum into an integral in the complex plane around the integers
r = 0,1,2,3, . . . ,∞ and then deform the contour of integration to obtain an integral in one
variable that can be evaluated by the saddle point method in the complex plane.

In this way we obtain

−φ(t,N) = 1

2i

∫
C

exp(N(xy − xβf (x)))

�[1 + x] sin[πx] dx , (22)

where y = ln t/N and C is an appropriate integration path in the complex plane: C goes
from +∞ + iε to +∞ − iε crossing the real line at 0 < x < 1. This path may be deformed
by breaking it into smaller circles running counterclockwise around the positive integers so
as to obtain the previous formula. We now deform it so that it goes from −i∞ to +i∞.
The possibility of doing this deformation is not clear. However quite often the sum in (21)
is not convergent and the rotation of the path in the complex plane may be a possible way of
giving a meaning to this non-convergent sum.

We now try to see what happens when N goes to infinity and we separate the leading
from the subleading terms. We look for a saddle point in the complex plane. The equation
for the saddle point (i.e. xsp) is

βf (xsp(y)) + xsp(y)βf ′(xsp(y)) − y = 0. (23)

Let us assume, for simplicity, that the leading contribution comes from the region where
0 < xsp < 14; indeed in the saddle point approximation for the t integral the dominating
values of y will be such that 0 < xsp(y∗) < 1. If the In this case we have at the leading and
first sub-leading order

−φ(t,N) = C(y) exp(Nxsp(y)(y − βf (xsp(y))), (24)

and

C(y) =
√

1

2πNβ

�[−xsp(y)]√−2f ′(xsp(y)) − xsp(y)f ′′(xsp(y))
(25)

4This is usually true at low temperatures, at high temperatures xsp > 1 and we stay in the unbroken replica
phase.
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is a (positive) quantity whose value is irrelevant to leading order in N , but will be useful in
the next section.

In order to extract the leading order contribution we notice that for large N

φ(t,N) ≈ 0 �⇒ exp(−φ(t,N)) = 1 if y − βf (xsp(y)) < 0, (26)

φ(t,N) ≈ ∞ �⇒ exp(−φ(t,N)) = 0 if y − βf (xsp(y)) > 0. (27)

In other words we can approximate exp(−φ(t,N)) with 0 or 1 depending on the sign of
y − βf (xsp(y)). This approximation being not valid in a region of width 1/N (in y) around
the point

y∗ = βf (xsp(y)). (28)

Finally we obtain

lnZN =
∫ ∞

0

dt

t
(exp(−t) − exp(−φ(t,N)) = Ny∗ + O(1). (29)

Note that (23) and (28) are equivalent to

f ′(xsp) = 0, (30)

that is the saddle point equation for the size of the block of the 1RSB solution. In the replica
approach the previous equation is derived maximizing with respect to x the function f (x)

that has the meaning, from (18), of free energy density (per replica) of x replicas in a state
with overlap q = q1. We have rederived the usual equation of the replica approach with one
step symmetry breaking following a different route.

We notice that the condition xsp < 1 is equivalent to the condition T < Tc . It is possible
that fluctuations over x are connected to sample-to-sample fluctuations of the critical tem-
perature. In any case for xsp > 1 i.e. T > Tc , the form of the finite-N corrections is different
because they are due to the existence of other saddle points that have a weight that is propor-
tional to exp−Nμ(T )/ν(T ) where both μ(T ) and ν(T ) tend to zero as T approaches Tc .
We will not discuss anymore this point that was studied in details in [13–15].

We may wonder if we could simplify (or clarify) the previous derivation. In principle
one could assume that φ(t,N) has a representation of the form 1

2i

∫
C

txgN(x) and use the
known expansion in powers of t to determine the behavior of gN(x) near the poles at integer
x. At the end one could use this information to reconstruct the function gN(x). In an other
alternative approach we could start from (18) and try to continue analytically Zk

N in the
variable k. It would be interesting to study these two alternative approaches and to find out
the possible advantages.

6 Finite N Corrections

The aim of this section is to compute the free energy taking into account the first corrections
in 1/N .

According to the replica folklore we should be able to compute these corrections in a
straightforward way. We should have that

ln(ZN(β)) ≡ −βNFN(β) = −βF(Q∗) − T̃r(ln(βH)) + ln(M(m)), (31)
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where we have used the short hand notation

−T̃r(A) = lim
n→0

Tr (A(n))

n
(32)

and M(n) is a multiplicity factor given by

lim
n→0

n−1 log(P (n,m)) , (33)

where P (m,n) is the number of way in which we can divide n replicas in m groups of n/m

replicas. As we have seen

P (m,n) = n!
(n/m)!(m!)n/m

, (34)

and therefore

M(n) = −�′(1) + �′(1) − ln(�[1 + m])
m

. (35)

The previous formula have a doubtful derivation. In particular it is not clear why one
should take the contribution coming from a particular value of m rather than those coming
from other values of m. We could mumble that the sum over m should become a integral, but
it is not clear which should be the integration measure. Moreover we cannot include in this
way the contribution coming from different values of m because their contribution would be
dominant (in the replica approach we have maximized, non minimized the free energy).

The approach presented in this note allows us (at least in some cases) to do the compu-
tation of the subleading corrections. We will assume that in the leading and in the next to
leading order the contribution of each block factorizes. The final expression for the contri-
bution of a given saddle point is given by

exp

(
l∑
i

(−βNmif (mi) − f1(mi))

)
, (36)

where

f1(m) = T̃r(ln(βH)). (37)

The 1/N corrections arise from two sources.

• The integral over y has been done approximating the integral with a step function. A more
accurate computation, where one consider corrections that are of order (1) for y − y∗

of order 1, gives a contribution of order 1/N to the free energy density. We call these
corrections 
FM . At this end we must use the expression for C(y) shown if (25).

• The corrections coming from the fluctuations of Qab = qab + δqab around the saddle
point of solution Q1RSB. The final effect of these corrections is denoted 
FQ and it equal
to f1(m).

The computation is similar to that in [14, 15] and we find:

NβFN(β) = NβF(xsp) + 
FM + 
FQ, (38)
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where 
FM is given by


FM =
(

1

m
− 1

)
�′(1) − ln(�(1 − m))

m
+ ln(2πm3βN(−f ′′(m)))

2m
. (39)

We caution the reader that in many cases the factorization property of the subleading
corrections is not true and therefore the value of 
FQ may be incorrect (this point should
be carefully investigated). However the distinctive feature of this approach is the presence
of the term 1

2m
log(N) in the subleading corrections. This is the consequence of having done

an extra saddle point integration (with respect to the conventional ones), i.e. the one over m:
it should be impossible to recover it in the conventional replica approach. As far as we can
see the presence of such a term (in the free energy) should be a quite general feature of one
step replica symmetry breaking and it should be relatively easy to detect it numerically.

In the case of the REM we can verify that we obtain the correct formulae using (19). In
this case terms coming from the determinant are trivial (if we use the replica approach to
solve the REM) and therefore we should put 
FQ = 0 in the previous equations. Indeed in
this case (39) coincide with the expression obtained by Derrida by an asymptotic expansion
of (9). In this case the equation for xsp can be explicitly solved, obtaining xsp = T/Tc .
In more general cases one has a more complicated function f (m) and the saddle point
equations have to be solved numerically. It would be interesting to check if one gets the
correct finite volume corrections in simple model like the p-spin spherical model and the
p-spin Ising model.

7 Conclusions

In this note we have shown that by starting from a reasonable form for the leading con-
tribution in an exact representation we recover the one step replica broken solution. We
introduced a method to calculate the fluctuations over the parameter m of the solution. In
doing so, the parameter m is the saddle point value over an integrating field of which we
provided the correct measure. In all our calculations we could check the limit of uncorre-
lated energies (REM) for which we had the solution obtained by Derrida without making
use of replicas. Finally, as a side effect, we gave an explanation of the mechanism why in
the 1RSB the value of m = T/Tc is actually a maximum and not a minimum.

Let us finally remark that the fluctuations on m are important below Tc , indeed their
contribution to the finite-size corrections of the free energy diverges approaching Tc from
below. It is possible that these fluctuations are related to sample-to-sample fluctuations of
the critical temperature. In this sense one could say that perturbative corrections to msp

reproduce non-perturbative corrections to the matrix Q: when m changes, there are some
elements Qab that change abruptly from q0 to q1 and vice-versa. In some works [18–21]
it has already been noted that, in short range models, these effects are possibly responsible
for the rising of a diverging correlation lengths as approaching Tc from above. It could be
interesting to extend our method to short-range models with the aim of predicting some of
their peculiar features.
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